369 research outputs found

    A feasibility study on the application of polarimetric decomposition algorithms to the detection of concealed weapons

    Get PDF
    State of the art security screening technology is not meeting all modern day requirements. There exists a gap in the market for the development of real time systems capable of detecting weapons at standoff ranges. Researchers at the Centre of Sensing and Imaging at Manchester Metropolitan University have developed a radar based screening technology. This technology will offer new security screening capabilities, making it feasible to have portable systems that can detect concealed weapons, with the added advantage of being capable of screening people in a crowd. The next step in the development of this radar system is to investigate the potential of using polarimetric scattering effects to detect concealed weapons, with the aim of improving the robustness and detection capabilities in comparison with the current state-of-the-art systems. This thesis provides a feasibility study in the application of polarimetric decomposition techniques to Concealed Weapon Detection (CWD) and an experimental radar is developed to provide the measurements required for this study. The major outcome of this work is that polarimetric decompositions including the Pauli, Krogager SDH and H-α decompositions have been demonstrated as a viable means of interpreting data for the detection of concealed weapons. This will allow the next generation of radar based weapon detectors to reduce some of the orientation dependency on detection rates as observed in the current state-of-the-art systems. The work presented in this thesis has resulted in a clear understanding of what is required to implement a fully polarimetric radar based weapon detector. The detection of weapons using the developed fully polarimetric radar with the aid of polarimetric decomposition algorithms combined with calibration and signal-processing algorithms has been demonstrated in this thesis

    Come to Daddy? Claiming Chris Cunningham for British Art Cinema

    Get PDF
    Twenty years after he came to prominence via a series of provocative, ground-breaking music videos, Chris Cunningham remains a troubling, elusive figure within British visual culture. His output – which includes short films, advertisements, art gallery commissions, installations, music production and a touring multi-screen live performance – is relatively slim, and his seemingly slow work rate (and tendency to leave projects uncompleted or unreleased) has been a frustration for fans and commentators, particularly those who hoped he would channel his interests and talents into a full-length ‘feature’ film project. There has been a diverse critical response to his musical sensitivity, his associations with UK electronica culture – and the Warp label in particular – his working relationship with Aphex Twin, his importance within the history of the pop video and his deployment of transgressive, suggestive imagery involving mutated, traumatised or robotic bodies. However, this article makes a claim for placing Cunningham within discourses of British art cinema. It proposes that the many contradictions that define and animate Cunningham's work – narrative versus abstraction, political engagement versus surrealism, sincerity versus provocation, commerce versus experimentation, art versus craft, a ‘British’ sensibility versus a transnational one – are also those that typify a particular terrain of British film culture that falls awkwardly between populism and experimentalism

    The loops facing the active site of prolyl oligopeptidase are crucial components in substrate gating and specificity

    Get PDF
    Prolyl oligopeptidase (POP) has emerged as a drug target for neurological diseases. A flexible loop structure comprising loop A (res. 189–209) and loop B (res. 577–608) at the domain interface is implicated in substrate entry to the active site. Here we determined kinetic and structural properties of POP with mutations in loop A, loop B, and in two additional flexible loops (the catalytic His loop, propeller Asp/Glu loop). POP lacking loop A proved to be an inefficient enzyme, as did POP with a mutation in loop B (T590C). Both variants displayed an altered substrate preference profile, with reduced ligand binding capacity. Conversely, the T202C mutation increased the flexibility of loop A, enhancing the catalytic efficiency beyond that of the native enzyme. The T590C mutation in loop B increased the preference for shorter peptides, indicating a role in substrate gating. Loop A and the His loop are disordered in the H680A mutant crystal structure, as seen in previous bacterial POP structures, implying coordinated structural dynamics of these loops. Unlike native POP, variants with a malfunctioning loop A were not inhibited by a 17-mer peptide that may bind non-productively to an exosite involving loop A. Biophysical studies suggest a predominantly closed resting state for POP with higher flexibility at the physiological temperature. The flexible loop A, loop B and His loop system at the active site is the main regulator of substrate gating and specificity and represents a new inhibitor target

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Brain Tumor Stem Cells as Therapeutic Targets in Models of Glioma

    Get PDF
    At this time, brain tumor stem cells remain a controversial hypothesis while malignant brain tumors continue to present a dire prognosis of severe morbidity and mortality. Yet, brain tumor stem cells may represent an essential cellular target for glioma therapy as they are postulated to be the tumorigenic cells responsible for recurrence. Targeting oncogenic pathways that are essential to the survival and growth of brain tumor stem cells represents a promising area for developing therapeutics. However, due to the multiple oncogenic pathways involved in glioma, it is necessary to determine which pathways are the essential targets for therapy. Furthermore, research still needs to comprehend the morphogenic processes of cell populations involved in tumor formation. Here, we review research and discuss perspectives on models of glioma in order to delineate the current issues in defining brain tumor stem cells as therapeutic targets in models of glioma

    Apoptosis signaling proteins as prognostic biomarkers in colorectal cancer: a review.

    Get PDF
    Colorectal cancer is a leading cause of cancer related mortality in the Western world. In recent years, combination 5-fluorouracil based adjuvant chemotherapy as first line treatment of this disease has led to improved disease free and overall survival. However drug resistance, both innate and acquired, remains an obstacle in the effective treatment of this disease. Apoptotic pathways are frequently altered in both tumor progression and drug resistance; therefore proteins associated with this pathway may have potential as prognostic biomarkers for this disease. Identification of clinical biomarkers that are able to identify patients who are more likely to respond to specific chemotherapy will lead to more personalized, effective, and less toxic therapy. This review focuses on the current status of apoptosis related proteins as biomarkers for colorectal cancer and discusses the possible application of systems approaches in this context
    corecore